ij- \ddot{g} -continuous map in Bitopological Spaces

S.Vijayalakshmi¹, T.Indira²

¹Research Scholar, ²Associate Professor, PG & Research Department of Mathematics, Seethalakshmi Ramasami College, Trichy-2. Email. id:<u>viji93selva@gmail.com¹</u>, <u>drtindira.chandru@gmail.com²</u>

Abstract- The aim of this paper is to introduce ij- \ddot{g} -continuous map, ij- \ddot{g} -irresolute map in Bitopological Spaces and to study about their properties.

Keywords: *ij*-*ÿ*-continuous map; *ij*-*ÿ*-irresolute map.

1. INTRODUCTION

Kelly [7] initiated the study of bitopological spaces in 1963. A nonempty set X equipped with two topologies τ_1 and τ_2 is called a bitopological space and is denoted by (X, τ_1, τ_2) . Since then several topologists generalized many of the results in topological spaces to bitopological spaces. Fukutake [3] introduced generalized closed sets in bitopological spaces. Fukutake [4] defined semi open sets in bitopological spaces. In 2012, Qays H. I. Al-Rubaye[9] introduced Semi- α -pen, semi - α - separation in Bitopological space.

2. PRELIMINARIES

Definition 2.1: A subset A of a bitopological space (X, τ_1, τ_2) is called a

- 1. $\tau_1 \tau_2$ -semi open [1] if $A \subset \tau_2 cl(\tau_1 int(A))$ and it is called $\tau_1 \tau_2$ -semi closed [2] if $\tau_1 int(\tau_2 cl(A)) \subset A$
- 2. $\tau_1 \tau_2$ -pre open[6] if $A \subset \tau_1 int(\tau_2 cl(A))$ and $\tau_1 \tau_2$ -pre closed [5] if $\tau_2 cl(\tau_1 int(A)) \subset A$
- 3. $\tau_1 \tau_2 \alpha$ -open [10] if $A \subset \tau_1 int (\tau_2 cl(\tau_1 int(A)))$.

Definition 2.2: A subset A of a bitopological space (X, τ_1, τ_2) is called a

- 1. $\tau_1 \tau_2$ -g-closed [3]($\tau_1 \tau_2$ -generalized closed) if τ_2 -cl(A) $\subset U$, whenever $A \subset U$, U is τ_1 -open.
- 2. $\tau_1 \tau_2$ -sg-closed [4]($\tau_1 \tau_2$ -semi generalized closed) if τ_2 -scl(A) $\subset U$, whenever $A \subset U$, U is τ_1 -semi open.
- 3. $\tau_1 \tau_2$ -gs-closed [6] $(\tau_1 \tau_2$ -generalized semi closed) if τ_2 -scl(A) $\subset U$, whenever $A \subset U$, U is τ_1 -open.

- 4. $\tau_1 \tau_2 \alpha g$ -closed [10] $(\tau_1 \tau_2 \alpha g eneralized closed)$ if $\tau_2 \alpha cl(A) \subset U$, whenever $A \subset U$, U is τ_1 -open.
- 5. $\tau_1 \tau_2$ -ga-closed [11] ($\tau_1 \tau_2$ -generalized aclosed) if τ_2 -acl(A) $\subset U$, whenever $A \subset U$, U is τ_1 -a-open.
- 6. $ij \cdot \hat{g} \cdot closed[6]$ if $\tau_2 \cdot cl(A) \subset U$, whenever $A \subset U, U$ is τ_1 semi open.
- 7. $\tau_1 \tau_2$ -semi- α -closed[8] if τ_2 -cl(A) $\subset U$, whenever $A \subset U$, U is $\tau_1 \tau_2$ - semi α - open.

Definition 2.3 [5]:

A subset A of (X, τ_1, τ_2) is called a $\tau_1 \tau_2 - \ddot{g}$ closed(resp. $\tau_2 \tau_1 - \ddot{g}$ -closed) if $\tau_2 - cl(A) \subset U$,(rep. $\tau_1 - cl(A) \subset U$) whenever $A \subset U$ and U is τ_1 -sg-open (resp. τ_2 -sg-open).

Results 2.4:[5]

- 1. Every τ_2 -closed set is $\tau_1\tau_2$ - \ddot{g} -closed sets.
- 2. Every $\tau_1 \tau_2$ -*ÿ*-closed set is $\tau_1 \tau_2$ -*y*-closed.
- 3. Every $\tau_1 \tau_2$ - \ddot{g} -closed set is $\tau_1 \tau_2$ - \hat{g} closed.
- 4. Every $\tau_1 \tau_2$ -*ÿ*-closed set is $\tau_1 \tau_2$ -gs-closed.
- 5. Every $\tau_1 \tau_2$ -*\ddot{g}*-closed set is $\tau_1 \tau_2$ - α g-closed.
- 6. Every $\tau_1 \tau_2$ -*\ddot{g}*-closed set is $\tau_1 \tau_2$ -g α -closed.
- 7. Arbitrary union of $\tau_1\tau_2$ - \ddot{g} -closed sets $\{A_i, i \in I\}$ in a bitopological space (X, τ_1, τ_2) is $\tau_1\tau_2$ - \ddot{g} -closed if the family $\{A_i, i \in I\}$ is locally finite on X.

Definition 2.5 [9]:

A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be *ij*-semi- α -continuous if the inverse image of each *i*-open set of *Y* is *ij*-semi- α -open in *X*, where $i \neq j$ and i, j = 1, 2.

Definition 2.6[2]:

A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be pairwise continuous iff the induced functions are $f: (X, \tau_1) \to (Y, \sigma_1)$ and $f: (X, \tau_2) \to (Y, \sigma_2)$ are continuous.

3. *ij-ÿ-*CONTINUOUS

Definition 3.1: A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be *ij-\vec{g}*-continuous if the inverse image of each σ_j -closed set of *Y* is $\tau_i \tau_j$ -\vec{g}-closed in *X*, where $i \neq j$ and i, j = 1, 2.

Theorem 3.2: Every pairwise continuous function is *ij-j*-continuous but not conversely.

Proof: Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be pairwise continuous. Let *V* be σ_j -closed set in *Y*. Then $f^{-1}(V)$ is τ_j -closed set in *X*, where j = 1,2. Since every τ_j -closed set is $\tau_i \tau_j$ - \ddot{g} -closed set, where $i \neq j$ and i, j = 1,2. Therefore $f^{-1}(V)$ is $\tau_i \tau_j$ - \ddot{g} -closed set in *X*, where $i \neq j$ and i, j = 1,2. Hence f is ij- \ddot{g} -closed set in *X*, where $i \neq j$ and i, j = 1,2. Hence f is ij- \ddot{g} -continuous.

Example 3.3:

Let $X = \{a, b, c, d\}, \tau_1 = \{X, \emptyset, \{b\}, \{b, d\}, \{b, c, d\}\}, \tau_2 = \{X, \emptyset, \{a\}, \{a, d\}, \{a, c, d\}\},$

 $\sigma_1 = \{Y, \emptyset, \{a\}, \{a, b\}\} \text{ and } \sigma_2 = \{Y, \emptyset, \{b\}, \{a, b\}\}.$

Define a function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be an identity function. Now, let $\{b, c, d\}$ is σ_1 -closed set in *Y*. Then $f^{-1}(\{b, c, d\}) = \{b, c, d\}$ is $\tau_2 \tau_1$ -*g*-closed set but not τ_1 -closed set.

Again, let $\{c, d\}$ is σ_2 -closed set in *Y*. Then $f^{-1}(\{c, d\}) = \{c, d\}$ is $\tau_1 \tau_2 \cdot \ddot{g}$ -closed set but not τ_2 -closed set. Hence *f* is *ij*- \ddot{g} -continuous but not pairwise continuous.

Theorem 3.4: The ij- \ddot{g} -continuous function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is independent of \ddot{g} continuousness of the induced functions $f: (X, \tau_1) \rightarrow$ (Y, σ_1) and $f: (X, \tau_2) \rightarrow (Y, \sigma_2)$ as can be seen in the
following examples

Example 3.5:

Let $X = Y = \{a, b, c, d\},\$ $\tau_1 = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\},\$ $\tau_2 = \{X, \emptyset, \{a\}, \{b, d\}, \{a, c\}, \{a, b, d\}\},\$ $\sigma_1 = \{Y, \emptyset, \{a, b\}\} \text{ and } \sigma_2 = \{Y, \emptyset, \{d\}, \{a, d\}\}.$

Define a function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be an identity function. Now, let $\{c, d\}$ is σ_1 -closed set in Y. Then $f^{-1}(\{c, d\}) = \{c, d\}$ is τ_1 - \ddot{g} -closed set but not $\tau_2\tau_1$ - \ddot{g} -closed set. Again, let $\{b, c\}$ is σ_2 -closed set in Y. Then $f^{-1}(\{b, c\}) = \{b, c\}$ is τ_2 - \ddot{g} -closed set but not $\tau_1\tau_2$ - \ddot{g} closed set. Hence the induced function is \ddot{g} -continuous but not ij- \ddot{g} -continuous.

Example 3.6:

Let $X = Y = \{a, b, c, d\}$ $\tau_1 = \{X, \emptyset, \{b\}, \{b, d\}, \{b, c, d\}\},$ $\tau_2 = \{X, \emptyset, \{a\}, \{a, c\}\}, \sigma_1 = \{Y, \emptyset, \{a\}, \{a, b\}\}$ and $\sigma_2 = \{Y, \emptyset, \{a, b\}, \{a, b, c\}\}.$ Define a function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be an identity function. Now, let $\{c, d\}$ is σ_1 -closed set in *Y*. Then $f^{-1}(\{c, d\}) = \{c, d\}$ is $\tau_2 \tau_1 \cdot \ddot{g}$ -closed set but not τ_1 -closed set. Hence *f* is ij- \ddot{g} -continuous but not the induced function is \ddot{g} -continuous.

Theorem 3.7: Every *ij-g-continuous is ij-g- continuous but not conversely.*

Proof: Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be $ij \cdot \ddot{g}$ continuous. Let V be σ_j -closed set in Y, where j = 1,2. Then $f^{-1}(V)$ is $\tau_i \tau_j \cdot \ddot{g}$ -closed set in X, where $i \neq j$ and i, j = 1,2. Since every $\tau_i \tau_j \cdot \ddot{g}$ -closed set is $\tau_i \tau_j \cdot g$ closed. Therefore $f^{-1}(V)$ is $\tau_i \tau_j \cdot g$ -closed set.

Example 3.8:

Let $X = Y = \{a, b, c\}, \tau_1 = \{X, \emptyset, \{c\}, \{a, b\}\}, \tau_2 = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}\}, \sigma_1 = \{Y, \emptyset, \{b, c\}\}$ and $\sigma_2 = \{Y, \emptyset, \{a, c\}\}.$

Define a mapping $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = a; f(b) = b; f(c) = c. Hence f is ij-g-continuous but not ij- \ddot{g} -continuous. Since $\{a\}, \{b\}$ are $\tau_1\tau_2$ -g-closed set but not $\tau_1\tau_2$ - \ddot{g} -closed set.

Theorem 3.9: Every ij- \ddot{g} -continuous is ij- \hat{g} -continuous but not conversely.

Proof: Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be ij- \ddot{g} continuous. Let V be σ_j -closed set in Y, where j = 1, 2. Then $f^{-1}(V)$ is $\tau_i \tau_j$ - \ddot{g} -closed set in X, where $i \neq j$ and i, j = 1, 2. Since every $\tau_i \tau_j$ - \ddot{g} -closed set is $\tau_i \tau_j$ - \hat{g} closed. Therefore $f^{-1}(V)$ is $\tau_i \tau_j$ - \hat{g} -closed set.

Example 3.10:

Let $X = Y = \{a, b, c\}, \tau_1 = \{X, \emptyset, \{c\}, \{a, b\}\}, \tau_2 = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}\}, \sigma_1 = \{Y, \emptyset, \{b, c\}\}$ and $\sigma_2 = \{Y, \emptyset, \{a, c\}\}.$

Define a mapping $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = a; f(b) = b; f(c) = c. Hence f is $ij \cdot \hat{g}$ -continuous but not $ij \cdot \hat{g}$ -continuous. Since $\{a\}, \{b\}$ are $\tau_1 \tau_2 \cdot \hat{g}$ -closed set but not $\tau_1 \tau_2 \cdot \hat{g}$ -closed set.

Theorem 3.11: Every *ij-g-continuous is ij-gs-continuous but not conversely.*

Proof: Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be ij \ddot{g} continuous. Let V be σ_j -closed set in Y, where j = 1, 2. Then $f^{-1}(V)$ is $\tau_i \tau_j - \ddot{g}$ -closed set in X, where $i \neq j$ and i, j = 1, 2. Since every $\tau_i \tau_j - \ddot{g}$ -closed set is $\tau_i \tau_j$ gs-closed. Therefore $f^{-1}(V)$ is $\tau_i \tau_j - gs$ -closed set.

Example 3.12:

Let $X = Y = \{a, b, c\}, \tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}, \tau_2 = \{X, \emptyset, \{a\}\}, \sigma_1 = \{Y, \emptyset, \{b\}\} \text{ and } \sigma_2 = \{Y, \emptyset, \{c\}\}.$ Define a mapping $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = a; f(b) = b; f(c) = c. Hence f is ij-gs-continuous but not ij - \ddot{g} -continuous. Since $\{b\}, \{c\}$ are $\tau_1 \tau_2$ -gs-closed set but not $\tau_1 \tau_2$ - \ddot{g} -closed set. **Theorem 3.13:** Every $ij - \ddot{g}$ -continuous is $ij - \alpha g$ continuous but not conversely.

Proof: Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be ij \ddot{g} continuous. Let V be σ_j -closed set in Y, where j = 1, 2. Then $f^{-1}(V)$ is $\tau_i \tau_j - \ddot{g}$ -closed set in X, where $i \neq j$ and i, j = 1, 2. Since every $\tau_i \tau_j - \ddot{a}g$ -closed set is $\tau_i \tau_j - \alpha g$ -closed. Therefore $f^{-1}(V)$ is $\tau_i \tau_j - \alpha g$ -closed set.

Example 3.14:

Let $X = Y = \{a, b, c\}, \tau_1 = \{X, \emptyset, \{b\}, \{c\}, \{b, c\}\}, \tau_2 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}, \sigma_1 = \{Y, \emptyset, \{c\}, \{a, b\}\} \text{ and } \sigma_2 = \{Y, \emptyset, \{a, c\}\}.$ Define a mapping $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = a; f(b) = b; f(c) = c. Hence f is $ij - \alpha g$ -continuous but not ij- \ddot{g} -continuous. Since $\{b\}, \{c\}$ are $\tau_1 \tau_2 - \hat{g}$ -closed set but not $\tau_1 \tau_2 - \ddot{g}$ -closed set.

Theorem 3.15: Every ij- \ddot{g} -continuous is ij- $g\alpha$ -continuous but not conversely.

Proof: Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be ij \ddot{g} continuous. Let V be σ_j -closed set in Y, where j = 1, 2. Then $f^{-1}(V)$ is $\tau_i \tau_j - \ddot{g}$ -closed set in X, where $i \neq j$ and i, j = 1, 2. Since every $\tau_i \tau_j - \ddot{g}$ -closed set is $\tau_i \tau_j$ $g\alpha$ -closed. Therefore $f^{-1}(V)$ is $\tau_i \tau_j - g\alpha$ -closed set.

Example 3.16:

Let $X = Y = \{a, b, c\}, \tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}, \tau_2 = \{X, \emptyset, \{b\}, \{c\}, \{b, c\}\}, \sigma_1 = \{Y, \emptyset, \{a, c\}\} \text{ and } \sigma_2 = \{Y, \emptyset, \{a\}, \{c\}, \{a, c\}\}.$

Define a mapping $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = a; f(b) = b; f(c) = c. Hence f is ij- $g\alpha$ -continuous but not ij- \ddot{g} -continuous. Since $\{b\}$ are $\tau_1\tau_2$ - \hat{g} -closed set but not $\tau_1\tau_2$ - \ddot{g} -closed set.

Theorem 3.17: If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is ij- \ddot{g} continuous and $g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ is pairwise continuous then $g \circ f$ is ij- \ddot{g} -continuous.

Proof: Let η_i -closed set in *Z*. Since *g* is pairwise continuous, then $g^{-1}(V)$ is σ_j -closed set in *Y*, where j = 1,2. Again *f* is ij- \ddot{g} -continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is $\tau_i \tau_j - \ddot{g}$ -closed set in *X*, where $i \neq j$ and i, j = 1,2. Which implies that $(g \circ f)^{-1}(V)$ is $\tau_i \tau_j - \ddot{g}$ -closed set in *X*, where $i \neq j$ and i, j = 1,2. Hence $g \circ f$ is ij- \ddot{g} -continuous.

Theorem 3.18: For a function $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ the following conditions are equivalent.

- (i) f is ij- \ddot{g} -continuous.
- (ii) $f^{-1}(U)$ is $\tau_i \tau_j$ - \ddot{g} -open for each σ_j -open set U in Y, where $i \neq j$ and i, j = 1, 2.

Proof: (*a*) \Rightarrow (*b*) Suppose that *f* is ij *g*-continuous. Let *V* be σ_j -open in *Y*. Then V^c is σ_j -closed in *Y*, j = 1,2. Since *f* is ij-*g*-continuous, we have $f^{-1}(V^c)$ is $\tau_i \tau_j$ -*g*-closed set in *X*, where $i \neq j$ and i, j = 1,2. Consequently, $f^{-1}(V)$ is $\tau_i \tau_j \cdot \ddot{g}$ -open set in *X*, where $i \neq j$ and i, j = 1, 2.

 $(b) \Rightarrow (a)$ Suppose that $f^{-1}(U)$ is $\tau_i \tau_j \cdot \ddot{g}$ -open set for each σ_j -open set U in Y, where $i \neq j$ and i, j = 1, 2. Let V be σ_j -closed in Y. Then V^c be σ_j -open in Y. By our assumption, $f^{-1}(V^c)$ is $\tau_i \tau_j \cdot \ddot{g}$ -open in X, where $i \neq j$ and i, j = 1, 2. Hence $f^{-1}(V)$ is $\tau_i \tau_j \cdot \ddot{g}$ -closed set in X, where $i \neq j$ and i, j = 1, 2. Therefore f is ij- \ddot{g} continuous.

Definition 3.19: A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be ij- \ddot{g} -irresolute if $f^{-1}(V)$ is $\tau_i \tau_j$ - \ddot{g} -closed set in X for each $\sigma_i \sigma_j$ - \ddot{g} -closed set V in Y, where $i \neq j$ and i, j = 1, 2.

Theorem 3.20: Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ be two functions. Then

- (1) $g \circ f$ is ij- \ddot{g} -continuous if g is ij- \ddot{g} -continuous and f is ij- \ddot{g} -irresolute.
- (2) $g \circ f$ is ij- \ddot{g} -irresolute if both f and g are ij- \ddot{g} -irresolute.

Proof:

- 1. Let *V* be η_j -closed in *Z*. Since *g* is ij- \ddot{g} -continuous, $g^{-1}(V)$ is $\sigma_i \sigma_j$ - \ddot{g} -closed in *Y*, where $i \neq j$ and i, j = 1, 2. Since *f* is ij- \ddot{g} -irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $\tau_i \tau_j$ - \ddot{g} -closed in *X*, where $i \neq j$ and i, j = 1, 2. Which implies that $(g \circ f)^{-1}(V)$ is $\tau_i \tau_j$ - \ddot{g} -closed in *X*, where $i \neq j$ and i, j = 1, 2. Hence $g \circ f$ is ij- \ddot{g} -continuous.
- 2. Let *V* be $\eta_i \eta_j \cdot \ddot{g}$ -closed in *Z*, where $i \neq j$ and i, j = 1, 2. Since *g* is $ij \cdot \ddot{g}$ -irresolute, $g^{-1}(V)$ is $\sigma_i \sigma_j \cdot \ddot{g}$ -closed set in *Y*, where $i \neq j$ and i, j = 1, 2. As *f* is $ij \cdot \ddot{g}$ -irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $\tau_i \tau_j \cdot \ddot{g}$ -closed in *X*, where $i \neq j$ and i, j = 1, 2. which implies that $(g \circ f)^{-1}(V)$ is $\tau_i \tau_j \cdot \ddot{g}$ -closed in *X*, where $i \neq j$ and i, j = 1, 2. Where $i \neq j$ and i, j = 1, 2. Where $i \neq j$ and i, j = 1, 2. Where $i \neq j$ and i, j = 1, 2. There $g \circ f$ is $ij \cdot \ddot{g}$ -irresolute.

Theorem 3.21: If a function $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is ij- \ddot{g} -irresolute, then it is ij- \ddot{g} -continuous. **Proof:** Let $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be ij- \ddot{g} irresolute. Let V be any σ_j -closed set in Y, j = 1,2. Since every σ_j -closed set is $\sigma_i \sigma_j$ - \ddot{g} -closed set, then Vis $\sigma_i \sigma_j$ - \ddot{g} -closed set in Y, where $i \neq j$ and i, j = 1,2. Which implies that $f^{-1}(V)$ is $\tau_i \tau_j$ - \ddot{g} -closed set in X, where $i \neq j$ and i, j = 1,2. Hence f is ij- \ddot{g} continuous.

Theorem 3.22: Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a function, then the following statements are equivalent. (1) f is ij- \ddot{g} -irresolute function.

International Journal of Research in Advent Technology, Vol.6, No.11, November 2018 E-ISSN: 2321-9637

Available online at www.ijrat.org

- (2) For $x \in X$ and each $\sigma_i \sigma_j$ - \ddot{g} -closed set V of Y containing f(x), there exists and $\tau_i \tau_j$ - \ddot{g} -closed set U such that $x \in U$ and $f(U) \subset V$, where $i \neq j$ and i, j = 1, 2.
- (3) The inverse image of every $\sigma_i \sigma_j$ - \ddot{g} -open set of Y is $\tau_i \tau_j$ - \ddot{g} -open in X, where $i \neq j$ and i, j = 1, 2.

Proof:

(1) \Rightarrow (2) Let *V* be an $\sigma_i \sigma_j \cdot \ddot{g}$ -closed set of *Y*, where $i \neq j$ and i, j = 1, 2 and $f(x) \in V$. Since *f* is $ij \cdot \ddot{g}$ irresolute, $f^{-1}(V)$ is $\tau_i \tau_j \cdot \ddot{g}$ -closed set in *X*, where $i \neq j$ and i, j = 1, 2 and $x \in f^{-1}(V)$. Put $U = f^{-1}(V)$.
Then $x \in U$ and $f(U) \subset V$.

(2) \Rightarrow (1) Let *V* be an $\sigma_i \sigma_j \cdot \ddot{g}$ -closed set of *Y*, where $i \neq j$ and i, j = 1, 2 and $x \in f^{-1}(V)$. Then $f(x) \in V$. Therefore by (2), there exists an $\tau_i \tau_j \cdot \ddot{g}$ -closed set (where $i \neq j$ and i, j = 1, 2) U_x such that $x \in U_x$ and $f(U_x) \subset V$. Hence $x \in U_x \subset f^{-1}(V)$. Which implies that $f^{-1}(V)$ is a union of $\tau_i \tau_j \cdot \ddot{g}$ -closed set of *X*, where $i \neq j$ and i, j = 1, 2(By known result 2.4-7)Thus $f^{-1}(V)$ is $\tau_i \tau_j \cdot \ddot{g}$ -closed set, where $i \neq j$ and i, j = 1, 2. Hence *f* is $ij \cdot \ddot{g}$ -irresolute function.

(1) \Leftrightarrow (3) The proof is obvious.

REFERENCES

- Bose S, semi open sets, semi continuity and semi open mappings in bitopological spaces, Bull. Cal. Math. Soc., 73(1981) 237-246.
- [2] Chandrasekhara Rao K, "Topology", Narosa publishing house, New delhi, 2009.
- [3] Fukutake T, on generalized closed sets in bitopological spaces, Acta Ciencia of Educ., 35(1985) 19-28.
- [4] Fukutake T, semi open sets on bitopological spaces, Bull.Fukuoka.Univ.of Educ 38(1989)1-7.
- [5] Indira T and Vijayalakshmi S, $\tau_1 \tau_2$ -*ÿ*-closed set in bitopological space, International journal of scientific engeering and research (IJSER), vol 5(5), 2017, 83-86.
- [6] Indira T, $\tau_1 \tau_2$ -[#]g-closed sets in Bitopological spaces, Annals of Pure And Applied mathematics, 7(2) (2014) 27-34.
- [7] Kelly J.C, Bitopological spaces, Proc.London.Math. Soc. 13(1963) 71-89.
- [8] Qays H. I. Al-Rubaye, Semi- α- connectedness in bitopological spaces, Journal of AL-Qadisiyah for computer science and mathematics, special issue, 2012, 135-145.
- [9] Qays H. I. Al-Rubaye, Semi- α- separation axioms in bitopological spaces, Al-Muthanna Journal of Pure Sciences, No.1, Vol.1, September(2012), 190-206.
- [10] Qays Hatem Imran, Generalized alpha star star closed sets in bitopological spaces, Gen.Math.Note., 22(2) (2014) 93-102.